WHAT IS CLAIMED IS: ## 1. A glycopeptide of formula I: wherein: R¹ is an amino containing saccharide group substituted on the amine with a substituent that comprises two or more (e.g. 2, 3, 4, 5, or 6) hydroxy (OH) groups; R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x,\ R^f,\ -C(O)R^f,\ or\ -C(O)-R^a-Y-R^b-(Z)_x;$ $R^3 \ is\ -OR^c,\ -NR^cR^c,\ -O-R^a-Y-R^b-(Z)_x,\ -NR^c-R^a-Y-R^b-(Z)_x,\ -NR^cR^c,\ or\ -O-R^c;$ 10 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a - Y - R^b - (Z)_x$, R^f , $-C(O)R^f$, or $-C(O) - R^a - Y - R^b - (Z)_x$; R^{s} is selected from the group consisting of hydrogen, halo, $-CH(R^{c})-NR^{c}R^{c}$, $-CH(R^{c})-NR^{c}R^{e}$, $-CH(R^{c})-NR^{c}R^{e}$, $-CH(R^{c})-NR^{c}R^{e}$, $-CH(R^{c})-NR^{c}-R^{a}-C(=O)-R^{x}$; 5 10 15 20 25 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$; R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$; R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene; R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring; R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring; R^{13} is selected from the group consisting of hydrogen or $-OR^{14}$; R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group; each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene; each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen; each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$; each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; Re is a saccharide group; 5 10 15 20 each R^f is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic; R^x is a nitrogen-linked amino saccharide or a nitrogen-linked heterocycle; X^1 , X^2 and X^3 are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur, $$S - S -, -NR^c -, -S(O) -, -SO_2 -, -NR^cC(O) -, -OSO_2 \ , -OC(O) -, -NR^cSO_2 -, -OC(O) -, -NR^cSO_2 -, -OC(O) -, -NR^cSO_2 -, -OC(O) -OC(O$$ $5 \qquad -C(O)NR^c-, -C(O)O^-, -SO_2NR^c-, -SO_2O^-, -P(O)(OR^c)O^-, -P(O)(OR^c)NR^c-, \\$ $-OP(O)(OR^c)O^-, -OP(O)(OR^c)NR^c-, -OC(O)O^-, -NR^cC(O)O^-, -NR^cC(O)NR^c-, -OC(O)O^-, -NR^cC(O)NR^c-, -OC(O)O^-, -OC($ $-OC(O)NR^{c}$ -, -C(=O)-, and $-NR^{c}SO_{2}NR^{c}$ -; each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic; *n* is 0, 1 or 2; and x is 1 or 2; or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof; provided the group R^3 does not comprises more than one carboxy group; and provided the group R^3 is not a substituent that comprises one or more saccharide groups and a carboxy (COOH) group; and provided the compound of formula I is not a compound of formula II: HO NH OH OH OH OH $$R^{3}$$ R^{19} R^{19} R^{20} R^{20} R^{3} - a) wherein R^3 is OH; R^5 is hydrogen; R^{19} is $-CH_2[CH(OH)]_4COOH$; and R^{20} is $-CH_2CH_2-NH-(CH_2)_9CH_3$; or - b) wherein R³ is OH; R⁵ is hydrogen; R¹⁹ is hydrogen; and R²⁰ is -CH₂CH₂-N(C(O)-3,4,5-trihydroxycyclohex-1-en-1-yl)- (CH₂)₉CH₃ (R,S,R isomer). - 2. The glycopeptide of claim 1 wherein R^1 is an amino containing saccharide group substituted on the amine with a group comprising two or more hydroxy groups that is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)$. 5 3. The glycopeptide of claim 1 wherein R^1 is a saccharide group of the formula: wherein R^{15} comprises two or more hydroxy groups and is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)_x$; and R^{16} is hydrogen or methyl. - 4. The glycopeptide of claim 3 wherein R¹⁵ is substituted alkyl, substituted alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-, substituted cycloalkyl-C(O)-, substituted cycloalkenyl-C(O)-, aryl-C(O)-, heteroaryl-C(O)-, or heterocyclic-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups. - The glycopeptide of claim 3 wherein R¹⁵ is a group of formula -CH2-CH(OH)CH(OH)CH₂-Y-R^b-(Z)_x; wherein Y, R^b, Z, and x have the values defined in claim 1. - 6. The glycopeptide of claim 3 wherein R¹⁵ is a group of formula-CH2-CH(OH)CH(OH)CH₂-R¹⁷ wherein R¹⁷ is hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic. 7. The glycopeptide of claim 1 which is a compound of formula II: HO NH CI OH OH OH $$CH_3$$ CH_3 CH_3 CH_3 CH_3 wherein: 5 R¹⁹ is hydrogen; R^{20} is $-R^a - Y - R^b - (Z)_x$, R^f , $-C(O)R^f$, or $-C(O) - R^a - Y - R^b - (Z)_x$; and R^a , Y, R^b , Z, x, R^f , R^3 , and R^5 have any of the values defined in claim 1; or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof. - 8. The glycopeptide of claim 7 wherein R³ is OH. - 9. The glycopeptide of claim 7 wherein R⁵ is hydrogen. - 10. The glycopeptide of claim 27 wherein R^{19} is hydrogen; and R^{20} is selected from $-R^a-Y-R^b$ (Z)_x, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)_x$. - 11. The glycopeptide of claim 10 wherein R²⁰ is substituted alkyl, substituted alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-, substituted cycloalkyl-C(O)-, aryl-C(O)-, heteroaryl-C(O)-, or heterocyclic-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups. - 12. The glycopeptide of claim 10 wherein R²⁰ is substituted alkyl, substituted alkenyl, substituted alkynyl, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups. 5 20 - 13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 1. - 14. The pharmaceutical composition of claim 13, which comprises a cyclodextrin. - 15. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 1. - 16. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 7. 17. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a pharmaceutical composition of claim 13.